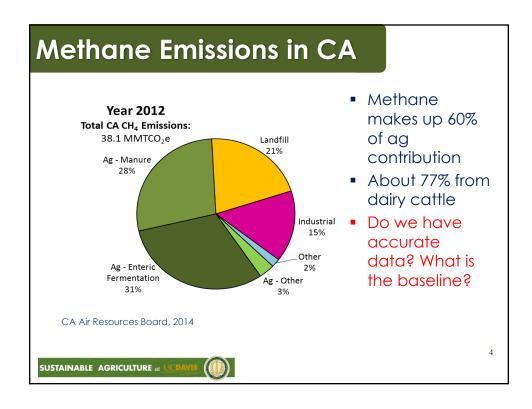
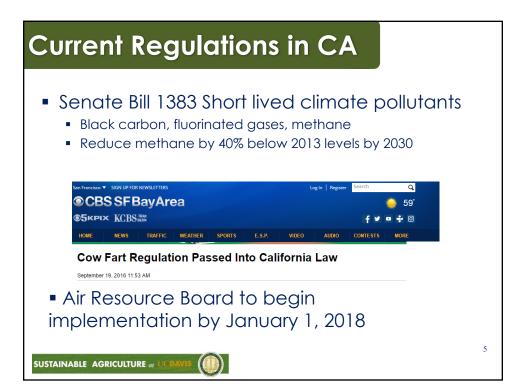
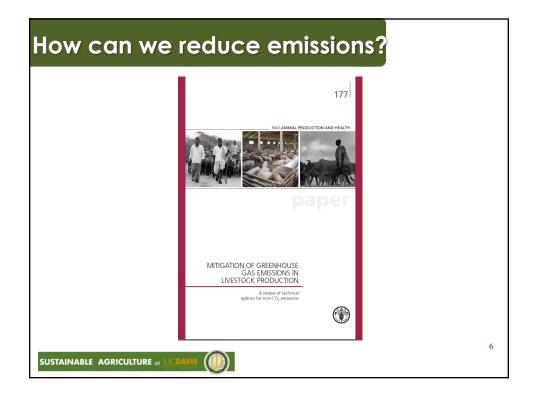
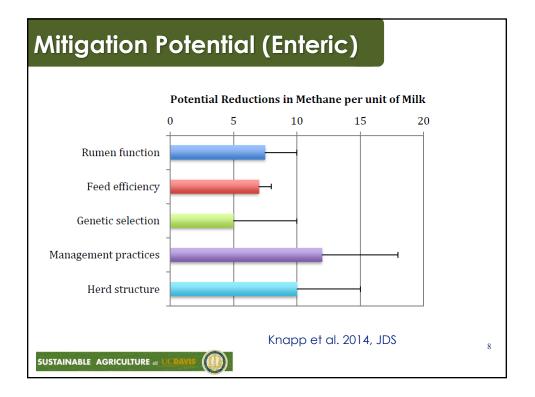
Environmental Constraints to Milk Production and Regulation CA Perspective

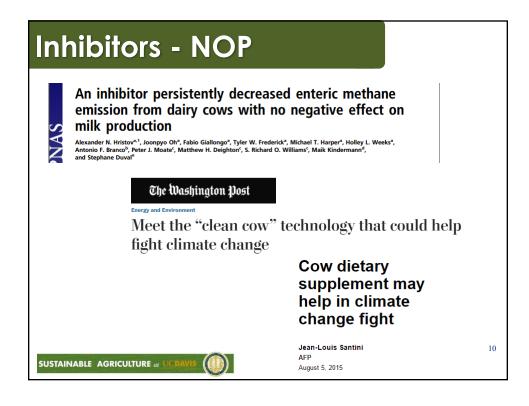
Ermias Kebreab University of California, Davis

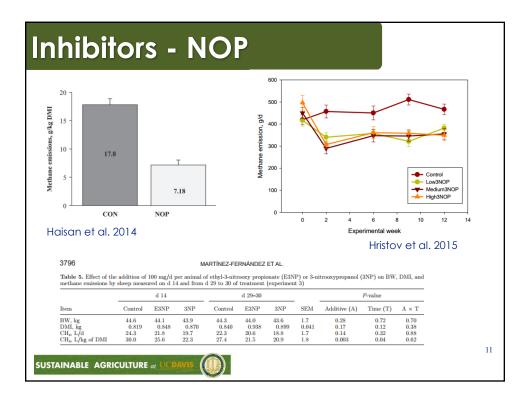


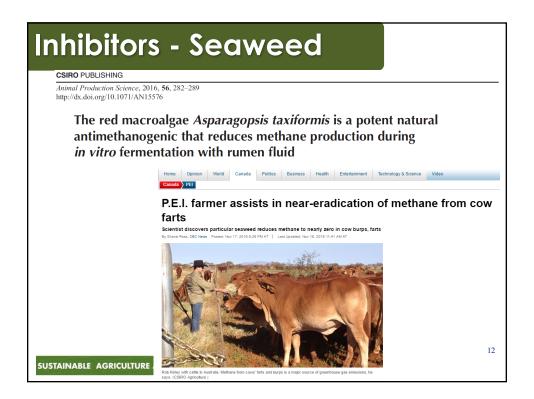

SUSTAINABLE AGRICULTURE at UCDA

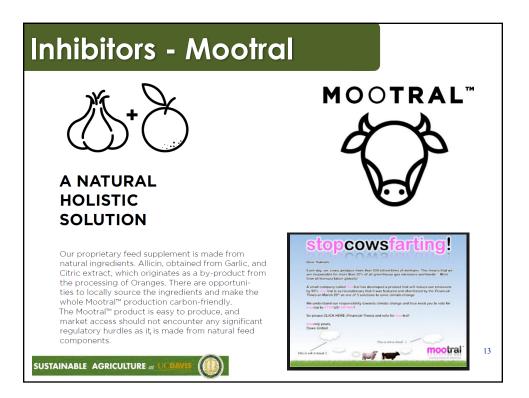

San Diego, May 3, 2017

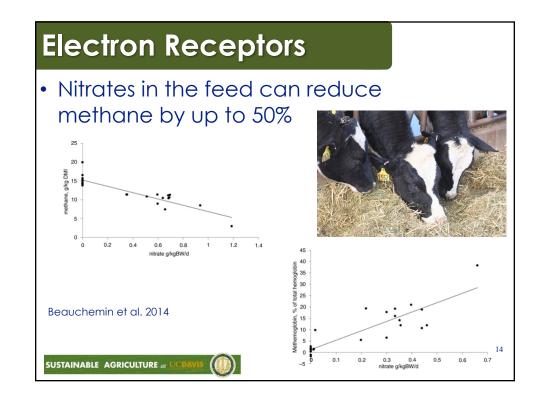

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

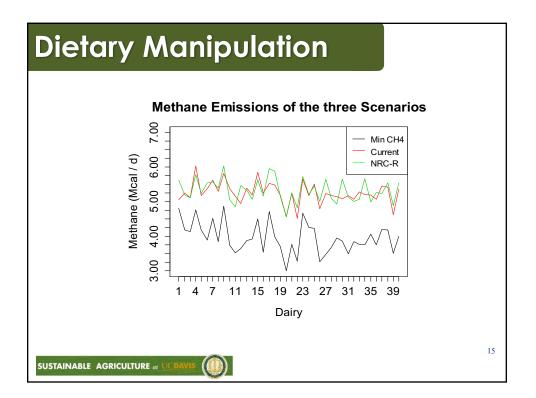


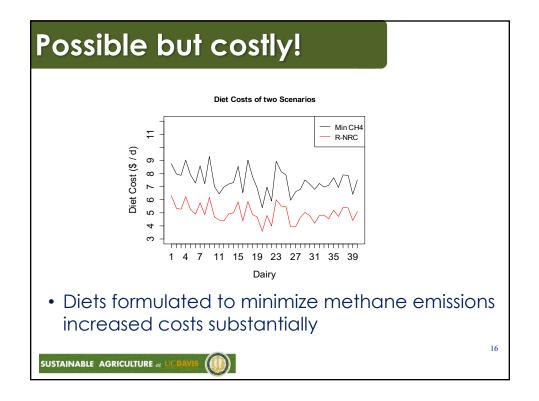


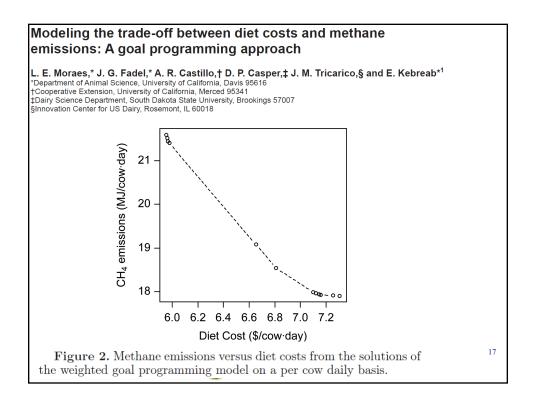


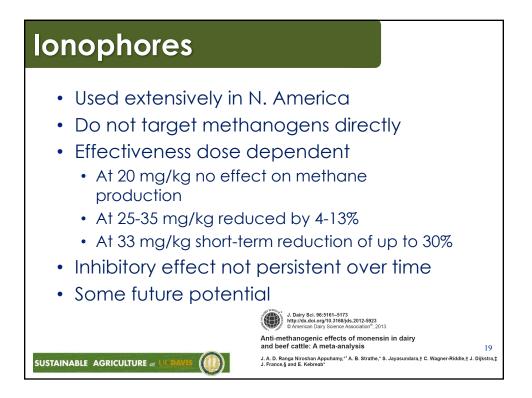

Potontial	Mitiaation	Strategies
		JUCIEULES

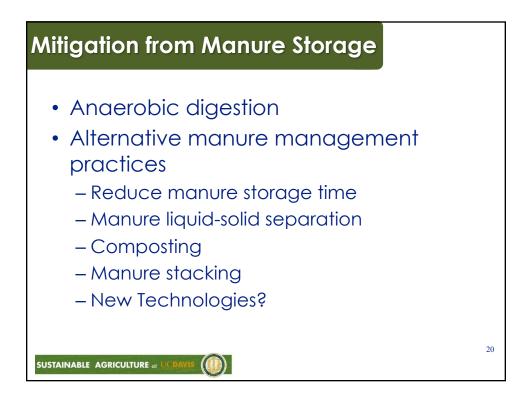

Category ¹	Potential CH ₄ mitigating effect ²	Long-term effect established	Effective ³	Environmentally safe or safe to the animal ⁴	Recommended ⁵
Inhibitors					
BCM and BES ⁶	High	?7	Yes	No ⁸	No
Chloroform	High	No?	Yes	No	No
Cyclodextrin	Low	No	Yes	No	No
3-nitrooxypropanol	Medium	?	Yes	?	?
Electron receptors					
FMA ⁹	No effect to High	?	?	Yes	No?
Nitroethane	Low	No	Yes?	No	No
Nitrate	High	No?	Yes	?	Yes? ¹⁰
Ionophores ¹¹	Low ¹²	No?	Yes? ¹²	Yes?	Yes?
Plant bioactive compounds13					
Tannins ¹⁴ (condensed)	Low	No?	Yes	Yes	Yes?
Saponins	Low?	No	?	Yes	No?
Essential oils	Low?	No	?	Yes	No
Exogenous enzymes	No effect to Low	No	No?	Yes?	No?
Defaunation	Low	No	?	Yes	No
Manipulation of rumen archaea and bacteria	Low?	No	?	Yes?	Yes? ¹⁵
Dietary lipids	Medium	No?	Yes	Yes	Yes? ¹⁶
Inclusion of concentrate ¹⁷	Low to Medium	Yes	Yes	Yes	Yes?18
Improving forage quality	Low to Medium	Yes	Yes	Yes	Yes
Grazing management	Low	Yes	Yes?	Yes	Yes?19
Feed processing	Low	Yes	Yes ²⁰	Yes ²⁰	Yes ²⁰
Mixed rations and feeding frequency ²¹	?	?	?	Yes	$\mathbf{\mathcal{L}}$
Precision (balanced) feeding and feed analysis	Low to Medium	Yes	Yes?	Yes	Yes ²²

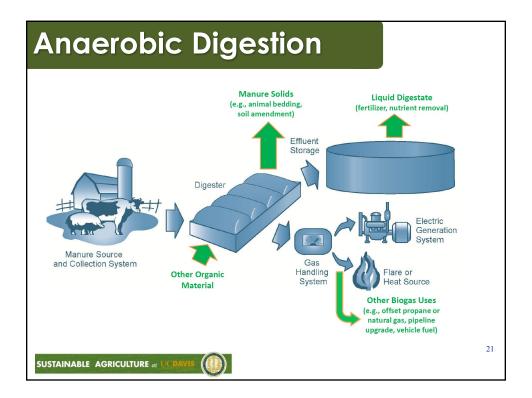


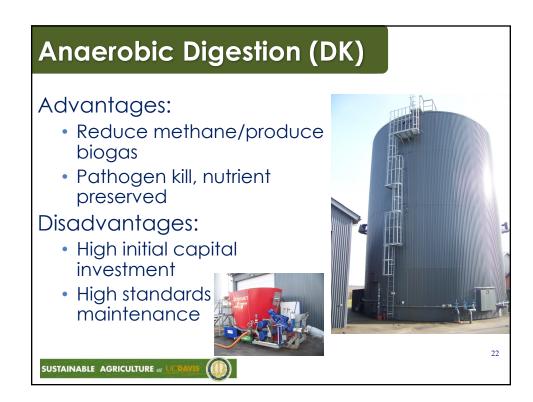


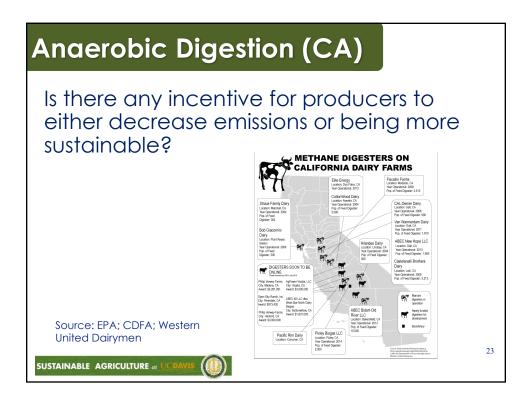











Study and Treatment		H4 in Control (g/kg of milk)		Mean Difference [95% (
Odongo et al., 2007a	- Feeding monenesin (24 mg/kg of DM)	17.7		-0.5[-1.5, 0.
Odongo et al., 2007b	- Supplementing Myristic acid (5% DM)	29.7	•	-8.5 [-16.8 , -0.
Beauchemin et al., 2009	- Crushed Sunflower seeds (10.6% DM)	12.4		-0.7[-4.1, 2.
	- Crushed Flax seeds (9.3% DM)	12.4	⊢ •-++	-1.9[-5.3, 1.
	- Crushed Canola seeds (9.3% DM)	12.4	H	-1.0 [-4.4 , 2.
Holtshausen et al., 2009	- Feeding saponin (Yucca schidigera); chamber method	13.4	—	-0.1[-2.9, 2.
	- Feeding saponin (Quillaja saponaria); chamber method	13.4		-0.8[-3.5, 2.
	 Feeding saponin (Yucca schidigera); SF6 method 	11.3		0.2 [-6.7 , 7.
	- Feeding saponin (Quillaja saponaria); SF6 method	11.3		-0.2[-7.1, 6.
Chung et al., 2012	 Fibrolytic enzyme additive (low dose) 	13.4	⊢ •−-1	0.9[-1.8, 3.
	 Fibrolytic enzyme additive (high dose) 	13.4	H 1	2.1 [-0.6 , 4.
Benchaar et al., 2013	- Dry distiller grain solubles (10% DM)	15.6		-1.4 [-2.9 , 0.
	- Dry distiller grain solubles (20% DM)	15.6	H B -1	-2.0 [-3.5 , -0.
	- Dry distiller grain solubles (30% DM)	15.6	H H -1	-2.4 [-3.9 , -0.
Hassanat et al., 2013	- Replacing forage (alfalfa silage) with corn silage (50%)	14.2	H	0.0[-5.5, 5.
	- Replacing forage (alfalfa silage) with corn silage (100%)	14.2		-0.8[-6.3, 4.
Benchaar et al., 2014	- Replacing forage (barley silage) with corn silage (0% DM)	15.3	H H -1	0.3 [-1.4 , 2.
	- Replacing forage (barley silage) with corn silage (100% D	VI) 15.3	H H H	-0.9[-2.6, 0.
Haisan et al., 2014	- Feeding 3-nitrooxypropanol (25 g/d)	11 -		-6.7 [-12.2 , -1.
		-20.0 -12.0	-4.0 0.0 4.0 8.0	

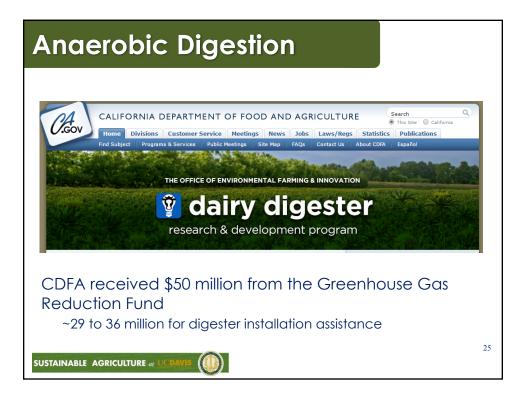
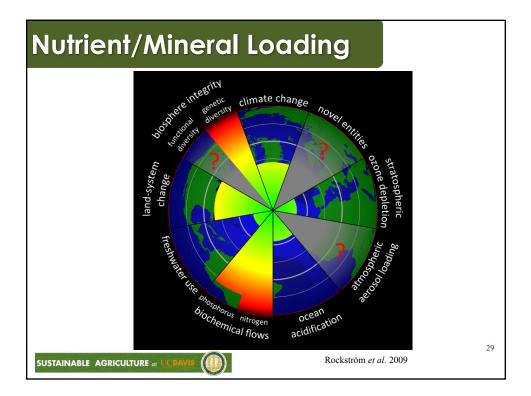
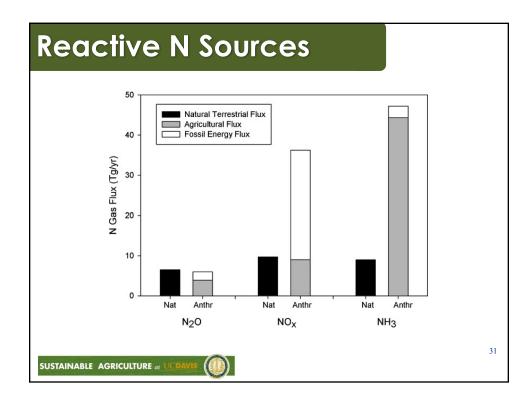
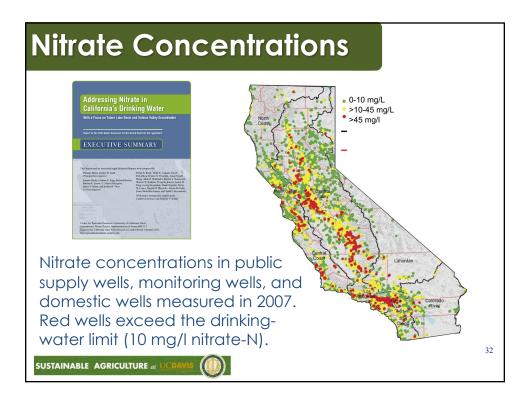


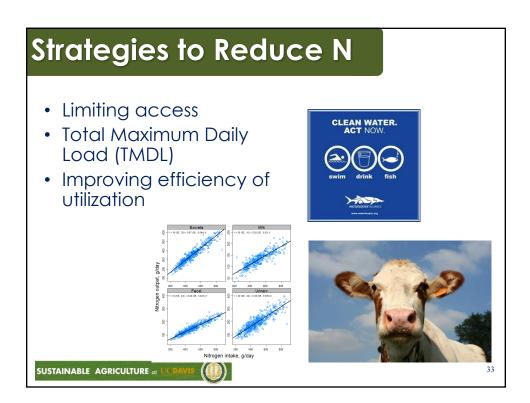
Table 9. Cost c	of Mitigation Optic	ons and	Policy	Instruments an	d Correspond	ing Mitigatior	Potentials
Mitigation Option or Policy Instrument (tax or credit)	Agricultural Sector	Price	of	GHG Mitigation Potential (MTCO2e)	% of Total Ag GHG Emissions (2009) ^a	% of GHG Emissions from Appropriate Agricultural Sector (2009) ^a	Source
C-emission tax or credit	Crops - California	ć	5	1 400 000	4.4%	15.5%	Garnache et
C-emission tax or credit	(Central Valley) Crops - California (Central Valley)	\$ \$	10	1,400,000	5.9%	21.1%	al. (2013) Garnache et al. (2013)
C-emission tax or credit	Crops - California (Central Valley)	\$	20	2,600,000	8.1%	28.8%	Garnache et al. (2013)
C-emission tax or credit	Crops - California (Central Valley)	\$	30	3,100,000	9.7%	34.4%	Garnache et al. (2013)
Anaerobic digestion - dairy	Manure management - US National	\$	0	770,000	0.2%	2.4%	Gloy (2011)
Anaerobic digestion - dairy	Manure management - US National	Ś	5	2,590,000	0.6%	8.2%	Gloy (2011)



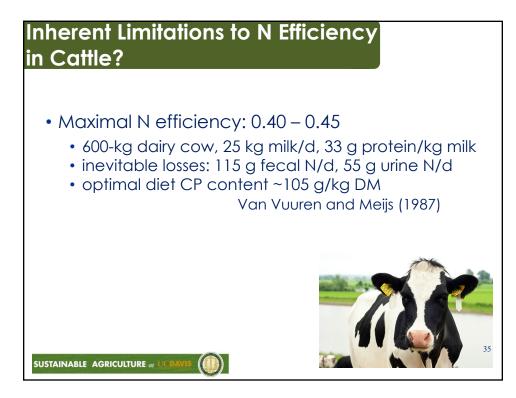
<section-header><section-header><section-header><image><image><image>




Alternative Methods



Ammonia small particles (PM_{2.5}) → lung problems acidification → soil fertility and tree vitality problems Nitrate pollution of drinking water → health risk eutrophication → algae growth, toxins Nitrous oxide greenhouse gas → climate change Urinary N far more vulnerable to evaporative/leaching losses than fecal N

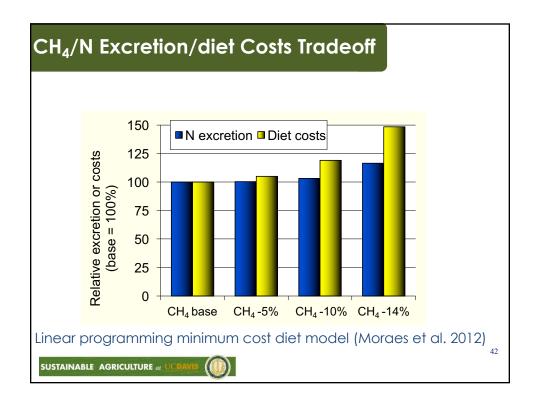


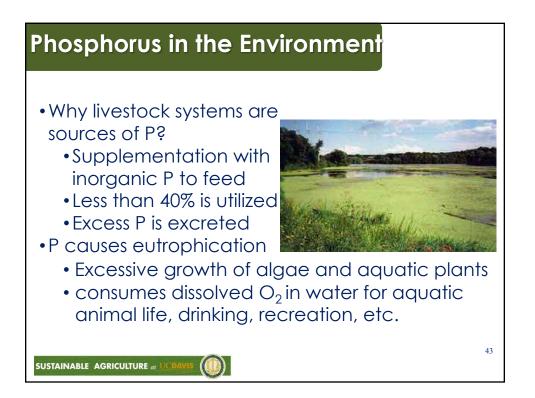
Large Variation in N Efficiency

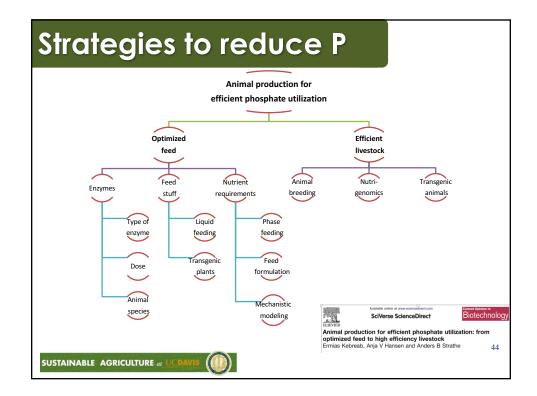
	Milk N efficiency			
	USA (<i>r</i>	n = 167)	EU (<i>n</i> = 28)	
_	Low	High	Low	High
Milk N efficiency	0.22	0.33	0.21	0.32
DM intake (kg/d)	23.2	23.8	17.9	18.9
3.5% FCM (I/d)	31.8	38.2	26.8	31.2
Forage (g/kg DM)	534	526	665	569
Forage CP (g/kg DM)	179	154	200	148
Lower (low) and upper (h	igh) quar	tile for N eff	iciency	
		Calsamig	lia et al. (2	010)

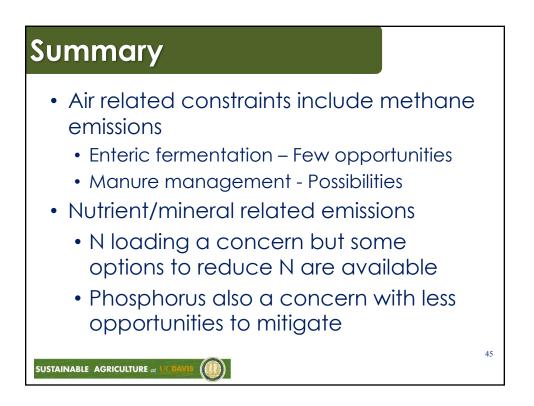
evitable N L utput (g/d)	osses and Mil	k N	
Source	N feces	N urine	N milk
Fermentation		35	
Microbial nucleic	acids	71	
Er recycling to	e to improve N o rumen men fermentable	19 13	
	RDN supply	36	198
Total	89	174	198
Maximum N effic	ciency		0.43
Reference cow: 4	0 kg milk/d, milk true	protein conte	ent 31.5 g/kg

V faeces	N urine	N milk
	35	
(13)	(71)	
51		
ss ⁹	19	
ion	13	
	36	198
ch. ⁹	174	198
		0.43
	N faeces	13 37 37 37 37 30 13 36 174


N faeces	N urine	N milk
	35	
13	71	
37		
39	(19)	
	13	
	36	198
89	174	198
)		0.43
·	protein conte	ent 31.5 g/kg
	13 37 39 89	13 71 37


Inevitable N	Losses and Milk N
Output (g/d)	


Source	N faeces	N urine	N milk
Fermentation		35	
Microbial nucleic acids	13	71	
Undigested protein	37		
Endogenous protein	39	19	
Maintenance		- 13	
Milk production		36	198
little scope to reduce los	s <mark>89</mark>	174	198
махітит і етісіепсу			0.43
Reference cow: 40 kg milk/	d, milk true p	protein conte	ent 31.5 g/kg


 efficiency of absorbed prote to milk protein often lower than maximum feed high energy, low prote diets avoid imbalance of amino acids 		N urine 35 71 19 13	
Milk production		36	198
Total	89	174	198

Source	N feces	N urine	N milk
Fermentation		35	
Microbial nucleic acids	13	71	
Undigested protein	37		
Endogenous protein	39	19	
Maintenance		13	
Milk production		36	198
Total	89	174	198
Maximum N efficiency			0.43
Reference cow: 40 kg milk,	/d, milk true	protein conte	ent 31.5 g/k

